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Rocks as Poroelastic Composites 

James G. Berryman 
Lawrence Livermore National Laboratory, Livermore, California, USA 

ABSTRACT: In Biot’s theory of poroelasticity, elastic materials contain connected voids or pores and 
these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical 
effects of stress or strain applied externally to the solid matrix. Eshelby’s formula for the response of a 
single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at infinity is a very well- 
known and important result in elasticity. Havin 
poroelasticity means that the hard part of Eshel % 

a rigorous generalization of Eshelby’s results valid for 
y’s work (in computing the elliptic integrals needed to 

evaluate the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles 
and disks) can be carried over from elasticity to poroelasticity - and also thermoelasticity - with 
only trivial modifications. Effective medium theories for poroelastic composites such as rocks can then 
be formulated easily by analogy to well-established methods used for elastic composites. An identity 
analogous to Eshelby’s classic result has been derived [Physical Review Letters 79:1142-1145 (1997) for 
use m these more complex and more realistic problems in rock mechanics analysis. Descriptions o 2 the 
application of this result as the starting point for new methods of estimation are presented. 

1 INTRODUCTION 

Havin an identity anal0 ous to Eshelby’s classic 
result $Xshelby, 19571 - for the response of a sin- 
gle ellipsoidal elastic inclusion in an elastic whole 
space to a strain imposed at infinity - available 
in more complex problems in composites analysis 
(such as poroelastic or thermoelastic composites) 
is of great practical interest. In Biot’s poroelas- 
ticity [Biot, 1941; Gassmann, 1951; Biot, 19621, 
elastic materials contain connected voids or pores 
and these pores may be filled with fluids under 
pressure. The fluid pressure then couples to the 
mechanical effects of an externally applied stress 
or strain. With a rigorous generalization of Es- 
helby’s formula valid for poroelasticity, the hard 
part of Eshelby’s work (in computing the elliptic 
integrals needed to evaluate the fourth-rank ten- 
sors for inclusions shaped like spheres, oblate and 
prolate spheroids, needles and disks) can then be 
carried over to these new results with only triv- 
ial modifications. Then, effective medium theories 
for poroelastic composites like rocks can be formu- 
lated easily by analogy to well-established theories 
for elastic composites [Korringa et al., 1979; Berry- 
man, 19801. 

The author [Berryman, 1997 has discovered 
a simple mathematical trick, to media 
having isotropic constituents and based on a linear 
combination of results from two thought experi- 
ments, that makes the derivation of a generaliza- 
tion fo Eshelby’s formula to poroelasticity an ele- 

mentary task. In earlier work by the author [Berry- 
man, 1985; 19921, the problem of acoustical scat- 
tering by a spherical inhomogeneity of one poroe- 
lastic material imbedded in another was solved and 
the results then used to construct various single- 
scattering-based effective medium theories. The 
Eshelby generalization now permits incorporation 
of Eshelby’s results for arbitrary ellipsoidal-shaped 
inclusions into both quasistatic formulations of ef- 
fective medium theory and/or into scattering for- 
mulas. The resulting improved estimates of poroe- 
lastic material properties has important applica- 
tions in geothermal and oil reservoir modeling, nu- 
clear waste disposal, and hydrology, among others. 

Generalization of almost all effective medium 
theories (see Berryman and Berge [1996] for a dis- 
cussion) now can proceed more easily into the com- 
plex realm of poroelastic composites by making use 
of this generalization of Eshelby’s results. 

2 POROELASTICITY AND ESHELBY 

Our subject is the treatment of rocks - and, espe- 
cially, fluid-saturated and partially saturated rocks 
- as composite poroelastic media. By this we 
mean to study and partially answer the question 
of how the elastic 
can be estimate 1 

poroelastic constants of the rock 
from a knowledge of the con- 

stituents of the rock, their volume fractions, and 
possibly the geometry of individual grains and/or 
pores - when that information is also available. 



The equations of quasistatic poroelasticity, as 
presented for example by Rice and Cleary [1976], 
may be written concisely in the form: 

Epq = Spprs (G) , (1) 

c = (m - %)/PO = 5 [;% + $1 . (‘4 

Commonly understood terms appearing in these 
equations are the strains sij, the solid stress g;j, 
the fluid pressure p, the elastic compliance tensor 
S&l of the drained porous frame, and the incre- 
ment of fluid content C whrch 1s related to the ini- 
tial ms and current m 

A.’ md mass contents, and to 
the initial density ps of the fluid). Applying well- 
known definitions from Biot and Willis [1957], the 
effective stress (for strain) appearing in (1) is 

(4 = OP4 + ~Pfb> (3) 

where the coefficient (Y = 1 - K/K: is the Biot- 
Willis parameter, K is the bulk modulus of the 
solid frame (jacketed modulus), and K’ is the un- 
jacketed solid modulus. The coefficient $ is Skemp- 
ton’s pore-pressure buildup coefficient [Skempton, 
1954. Green and Wang, 1986; Hart and Wang, 
19951, given by 

1 
-=1+fy++), (4) 
B 

where 4s is the initial porosity, Kf is the bulk 
modulus of the pore fluid, and I~: is the unjack- 
eted pore modulus. The equation for the change 
in porosity 4 is 

4 - mo = ; [& + Pf] - g,,. (5) 

In other work the present author has often used 
the alternative notation I(, = Ki and K+ = I~: 
for the two unjacketed bulk moduli. 

Starting from these basic equations of poroelas- 
ticity we want to formulate methods of computing 
the effective coefficients in composite poroelastic 
media when these media are themselves composed 
of simpler generally microhomogeneous) poroelas- 
tic media. ‘T he corresponding problem in elasticity 
has been studied extensively for at least the last 
40 years. It is desirable to try to make the tran- 
sition from composite elastic media to composite 
poroelastic media as elegantly as it can possibly 
be done. One way in which this might be accom- 
plished within effective medium theory is through 
the use of similar techniques applied to the full 
poroelastic equations such as was done in Berry- 
man 
is to Ii 

19921. Another way to reach the same goal 
nd new extensions to 

of the classic results like 
the analysis virtually the 
case. 

but 
We restrict discussion here to poroelasticity, 
the modifications necessary for application to 

thermoelasticity are not difficult. In our notation, 
a superscript i refers to the inclusion phase, while 
superscripts h and * refer to host and compos- 
ite media, respectively. In this application the 
composite is a very simple one, being an infinite 
medium of host material with a single ellipsoidal 
inclusion of the ith phase. The basic result of Es- 
helby [1957] is then of the form 

,(4 = T E* 
pq IT-s TS1 (6) 

where ~(‘1 is the uniform induced strain in the in- 
clusion, E* is the uniform applied strain of the com- 
posite at infinity, and 2’ is the fourth-rank tensor 
relating these two strains. The summation conven- 
tion for repeated indices is assumed in exoressions 
such as (6). 

After considering two thought experiments - 
one when there is no fluid nresent in the nores and 
another when a saturating &id is presentland both 
the confining and pore pressures are chosen so that 
a uniform expansion of the host medium and inclu- 
sion occur [Berryman and Milton, 1991; Berryman 
and Berge, 19981, we find that the final form of the 
generalization of Eshelby’s formula to poroelastic- 
ity is given by 

,(i) 
PP - %bf) = TVs K, - 4Pr)l (7) 

The full analysis shows that, if the pore fluid pres- 
sure vanishes (e.g., pf = 0 in the absence of a pore 
fluid), then the uniform strain E disappears from 

“h an ! it reduces exactly to (6) as it should. In the 
ot er hmrtmg case, if the pore pressure has been 
specified to be a nonzero constant, then the uni- 
form strain E in (7 can be easily computed. So, 
if the strain at in f! nity happens to be chosen to 
be equal to this uniform strain, then from (7) the 
inclusion strain also takes the value at infinity as 
it should. Since the equation for eci) is necessar- 
ily linear, these two cases are enough to determine 
the behavior for arbitrary values of e* and pf. In 
poroelasticity, the strain ePq can be determined in 
advance from the applied fluid pressure p and the 
properties of the host and inclusion. In particular, 
we find that 

The formulas presented in the following work form 
one set of useful applications of this generalization 
of Eshelby’s formula. 

3 EFFECTIVE MEDIUM THEORIES 

The analysis to follow will come in two main steps 
for each of the examples presented. The first step 
involves recovering the elastic result for the case 
when the pore pressure vanishes. i.e.. for thedrained 



porous frame. Then, Eqs. (1) and (3) imply, when 
pf = 0, that 

E pq = Spqr&. (9) 

Therefore, this step is completely equivalent to the 
analysis already presented in Berryman and Berge 
[1996]. We will present these results (along with 
quick derivations for the sake of completeness) be- 
cause the results are needed to understand the sec- 
ond step of the analysis in each case. The second 
step is to derive the equivalent effective medium 
theory expression for I{:, or equivalently for the 
Biot-Willis parameter (Y*. 

The general result we use for the drained anal- 
ysis takes the form (see Eq. (19) of Berryman and 
Berge [1996]) 

(C* - C”‘) c oiG%v = 

cuj(di) - C(‘))G%,, (10) 

where C* is the stiffness matrix (inverse of the 
compliance matrix S”) to be determined, Cc’) is 
the stiffness matrix of some convenient elastic ref- 
erence material, vi is the volume fraction and Cci) 
the stiffness matrix of the ith constituent of the 
elastic composite, E, is the strain in the reference 
material, and G” is the (exact and generally un- 
known) linear coefficient relating strains in mate- 
rial i to those in material r according to E; = Grisr. 

3.1 Coherent potential approximation 
The first scheme we consider is sometimes called 
the Coherent Potential Approximation (CPA) [Gu- 
bernatis and Krumhansl, 1975; Berryman, 1992; 
Berryman and Berge, 19961 or the Self-Consistent 
Scheme [Korringa et al., 1979; Berryman, 19801. 

When there is no pore fluid present (i.e., drained 
frame conditions), the equations of poroelasticity 
reduce to those of elasticity (10) for the porous 
frame material. Within CPA, the idea is to treat 
all constituents on an equal footing, so no single 
material serves as host medium for the others. For 
this reason, the CPA is sometimes known as a sym- 
metrical self-consistent scheme. To find the formu- 
las for the CPA, we take the reference material to 
be the composite itself, so r = *. The formula (10) 
reduces to 

c v;(C(i) - C&JP = 0, (11) 

where we have now approximated the unknown lin- 
ear coefficient by the Eshelby-Wu tensor T’” cor- 
responding to inclusions of stiffness Cc”) in host 
material of stiffness C;.,. 

To make use of the generalization of Eshelby’s 
formula for poroelasticity in the case when pore 
fluid and pore pressure are significant factors, we 
note that each inclusion is effectively imbedded in 

the composite material *, so it makes sense to con- 
sider the formula 

di) = e*j(pf) + T*” [E* - e*;(pf)] , (1‘4 

where the strain correspondin to equal expansion 
or contraction of both materra s z and * is given by 3 

If the mixture were composed only of the two ma- 
terials i and *, then the uniform expansion re- 
sult would apply exactly. In the composite poroe- 
lastic material, (12) should be viewed as an es- 
timate of the true strain of the ith constituent. 
This estimate is conceptually on the same foot- 
ing as that traditionally used when saying that 
sci) = T*is* is a reasonable approximation of the 
strain in the ith constituent of an elastic compos- 
ite, even though there may be many other types of 
materials present. 

To derive a formula within CPA for the Biot- 
Willis constant cr* ,,we want to make use of (12) 
somehow. For elastrcity, the average stress equals 
the total stress, so Cvioi = o. This fact ,was ac- 
tually used to derive (10). However, for poroelas- 
ticity with finite pore pressure pf, It is no longer 
true that the average stress is equal to the total 
stress, i.e., Cvia(“) # 0. The correct relation for ’ 
the effective stress is more complicated than this. 
However, it is still true that the average strain is 
equal to the total strain, i.e., 

c ?Ji&) = &I. (14) 

Furthermore, this relation is just what is needed 
to make application of (12) possible. Substituting 
(12) into (14), we find that 

c vi(I - T*+*“(pf) = c vi(I - T*i)~*, (15) 

where I is the identity matrix. Equation (15) is al- 
most what we want, but the right hand side seems 
to be a problem in general! because it depends ex- 
plicitly on s*, which is arbrtrary. It is known how- 
ever that C vi(I - G’“) = 0 [Hill, 1963; Berryman 
and Berge, 19961, and since T*” is our approxima- 
tion to G*i it is clear that the right hand side of 
(15) should be set identically to zero. Thus, after 
making use of (13) in (15), the CPA for cy* is 

Some care should be taken however to check the 
degree of satisfaction of the subsidiary condition 
C u;(I-T*‘) N 0 to make sure that it is at least ap- 
pC:oximately satisfied by the estimate obtained for 

cp 
exact y for spherical mclusrons. Furthermore “1 

It turns out that this condition is satisfied 
in ~~ ,~~~_1_~~..~.:~~~.~~~ ~-2 



the case of spheres we have P*i = (I~*+$*)/(I<(“)+ 
$*), and it is easy to show that (15) reduces to 

and, since C u;E(~) = E* by construction, (22) should 
be equated to (21). The final result is 

c Vi(cx - “;pa)P*’ = 0. (2) (17) 

which is very similar in form to (11) for the moduli. 

(I - Th*) eh”(pf) = c vi (I - Th”) eh”(pf) 

+..., (23) 

3.2 Average t;matrix/I~uster-Tokssi;z scheme 
The second approximation scheme we will consider 
is sometimes called the Average T-Matrix Approx- 
imation (ATA) [Berryman, 19921 and sometimes 
the Kuster-Toksijz (KT) Scheme [Kuster and Tok- 
si;z, 19741. 

where the terms indicated by the ellipsis . are of 
the form Cv;(Thi - Th*)e and should vanish for 
the same reasons as those discussed in the case of a 
similar term in the derivation for CPA. Thus, the 
KT formula for the Biot-Willis parameter cy* is 

In the absence of a pore fluid, the poroelastic 
problem reduces again precisely to the elastic com- 
posite problem. Following the analysis of Berry- 
man and Berge [1996], we find that the general 
result (10) is conveniently written as 

(C’ - Ch)c = cv;(Ci - Ch)Gh”ch. (18) 

We obtained this form from (10) by noting that 
E = Cvis: = CviGPier. The Kuster-Tok& ap- 
proximation includes the assumptions that E = 
Gh*~h N Th*&h and that G’” N Thi. Then, the 
resulting formula for the approximation is 

As in the CPA, we now have a subsidiary con- 
dition C vi(Thi - Th*) N 0 that should be checked 
for approximate satisfaction by C’ 

7” 
Again, we 

find this condition is satisfied exact y for spherical 
inclusions. 

(Cl%, - ch)Th* = c v<( ci - Ch)Th”. (19) 

The further assumption is normally made that the 
tensor Th” is always the one for spherical inclu- 
sions, while Th” can be for arbitrary shapes of in- 
clusions. 

To derive a formula within ATA/KT for the 
Biot-Willis constant cy*, we need to make use of the 
Eshelby generalization again and make appropriate 
substitutions into the formula (14). The thought 
experiment for KT is a little more complex than 
that for CPA, however, so we actually need to do 
this in two steps. First, note that if we view the 
composite as a finite sphere and imbed this sphere 
in a host material (that may be and usually is cho- 
sen to be the same as one of the constituent ma- 
terials 

i> 
then the appropriate generalized Eshelby 

formu a for the poroelastic case is 

3.3 Differential effective medium approximation 
The third scheme we consider is the Differential Ef- 
fective Medium (DEM) Approximation [Cleary et 
al., 1980; Norris, 1985; Avellaneda, 19871. We limit 
the treatment here to the two-component case, as 
that is the easiest to explain in a small space. This 
method is derived by assuming the composite is 
formed by successively mixing very small (infinites- 
imal) fractions dy of one inclusion material i in 
another host material. The host medium changes 
gradually during this process from material h at 
y = 0 into the desired composite material * at 
some finite y value. Starting with (lo), the re- 
sulting formula for the stiffness is the differential 
equation 

cl- Y)+;,,(Y) = [c(i) - chd~)] T*i, (25) 

where the initial value of the stiffness tensor is 
C& 
is t 

g ( -0 M y - ) = Cch). The Eshelby-Wu tensor T*i 
e one corresponding to inclusions of stiffness 

8) = eh”(pf) + Thi (s - ehi(p,)) , (20) 

where E is the applied strain at infinity. Equation 
(20) can then be averaged to give 

c vie@) = c vui (I - Th”) eh”(pf) + c v;Th”a.(21) 

But now if we consider that the composite has the 
effective properties C’ 
sphere imbedded in t&‘h%l gaterial, then we can 

kT in the composite 

also write 

C; imbedded in host material of stiffness CgE . 
The resulting system of coupled equations may F: e 
integrated to any desired value of total inclusion 
volume fraction y = 2); easily using (for example) 
a Runge-Kutta scheme. 

E* = eh*(pf) + Th* (c - eh*(p,)) , (22) 

The formula for the Biot-Willis parameter is 
obtained in this scheme most easily by starting 
from (24), noting first that the sum on the right is 
reduced to a single term for the phase that is not 
the initial host phase, replacing the parameters for 
the host medium by their values evaluated at con- 
centration y and the * parameters by their values 
evaluated at concentration y + dy. The volume 
fraction is replaced by o; + dy/(l - y) to account 
for the fact that more than the amount dy of the 



composite host material must be replaced in order 
to achieve the new desired volume fraction y + dy. 
Finally, taking the limit as dy -+ 0 gives the de- 
sired formula. For spherical inclusions, the result 
is 

(1 - Y)+M(Y) = [a@) -&W(Y)] P’“, (26) 

where crbEM(0) = och). The corresponding result 
for the bulk modulus obtained directly from (25) 
is 

(1 - ~)-&~(y) = [K(“) - I&(y)] P*i, (27) 

where I<DEM(O) = 1i(h). These results are both 
exactly what was found previously for spherical in- 
clusions [Berryman, 1992 
complicated derivation. & 

but using a much more 
he generalization to non- 

spherical inclusions is now straightforward, but be- 
cause of limited space we will not pursue this here. 

3.4 M&-Tanaka approximation 
The final approximation we consider is the Mori- 
Tanaka (MT) Scheme of Mori and Tanaka [1973], 
as described by Weng [1984], Benveniste [1987], 
and others [see, for example, Berryman and Berge, 
19961. 

For the drained frame, the Mori-Tanaka ap- 
proximation is obtained by assuming the compos- 
ite has a host material with imbedded inclusions 
and then choosing the host to serve as the refer- 
ence material, so T = h. Making this choice in (10) 
and then substituting Gh” 1~ T’“, we obtain 

c v;(C(“) - C&,)Th” = 0. Pf3) 

The Mori-Tanaka result for the bulk modulus with 
arbitrary ellipsoidal inclusion shapes is 

c ?&(I~@) - K&,)P” = 0. (29) 
Because the Mori-Tanaka scheme can not be de- 
rived using any analogy to scattering theory (un- 
like the other three schemes considered so far), 
there is some ambiguity about how to apply the 
present method to this approach and somewhat 
different formulas for the Biot-Willis parameter may 
therefore result. One of the more straightforward 
approaches can be shown to lead to the formula 

c Vi(&) - c&,)P” = 0, (30) 
when the inclusions are all spherical in shape. We 
stress however that (30) is not the only possible for- 
mula that could be obtained that could be consid- 
ered fully consistent with the Mori-Tanaka scheme. 

Note that it is easy to show that both (30) and 
(26) have the advantage that they reproduce the 
known exact results [Berryman and Milton,, 19911 
for two component poroelastic media. This fact 
might become a useful criterion for choosing among 
various possibilities that arise when trying to iden- 
tify the proper generalizations of these theories for 
the poroelastic case. 

4 CONSISTENCY WITH EXACT RESULTS 

One particularly powerful means of checking the 
validity of any estimation scheme is to compare 
the results with those of various exact results that 
may be known for special cases. In the present 
problem, a result of Berryman and Milton [I9911 
provides a convenient check on all the formulas 
derived so far. This result states that for an ar- 
bitrary two-component mixture of Gassmann ma- 
terials the Biot-Willis parameter must satisfy the 
conditions 

cy* - &) cy* - & 
&) - &) I(* - I((‘) = I<’ - K(2) = K(2) - K(l)’ (31) 

It is not hard to show that all the formulas pre- 
sented satisfy these constraints as long as the side 
condition that has been mentioned previously, i.e., 
Cvi(l - P*i) = 0 for CPA or the corresponding 
side condition for the other problems, is also sat- 
isfied. This satisfaction is especially easy to check 
in the case of spherical inclusions, but is not lim- 
ited to that case. Thus, the theories presented here 
all satisfy this important additional condition that 
any “good” theory should satisfy. 

5 EXAMPLE 

The Table provides examples of the results ob- 
tained using two of the four methods discussed 
above. These two methods are the only two of 
these four that are known to be realizable [Milton, 
1985; Avellaneda, 19871. These particular exam- 
ples were computed assuming spherical inclusions. 

Input parameters are from Table 7 of [Berry- 
man, 19921 for a clay and Kayenta sandstone mix- 
ture. Sandstone occupies 60% of the volume, porous 
clay occupies the remaining 40%, and the total 
porosity is 16%. DEM- assumes the weak compo- 
nent is the host, while DEM+ assumes the strong 
component is the host. 

TABLE. Three examples of computed values of 
the Biot-Willis parameter cy* and the frame bulk 
modulus K’ using DEM and CPA. 

6 CONCLUSIONS 

We have demonstrated that the generalized Es- 
helby formula (7) derived earlier by the author 
[Berryman, 19971 can be successfully used in var- 
ious well-known effective medium theories to es- 
timate the Biot-Willis parameter when the inclu- 
sions are of arbitrary ellipsoidal shape. This gen- 
eralizes other work of the author [Berryman, 1985; 



19921 that provided means of computing these same 
constants but only for the case of spherical inclu- 
sions. The new formulas are no more difficult to 
compute that the corresponding formulas for the 
bulk and shear (empty porous) frame moduli of 
these materials. 

The work presented is incomplete because it 
does not yet show how to compute the remaining 
parameter B (Skempton’s coefficient) for a gen- 
eral ellipsoidal, inclusion within these various ef- 
fective medium theories. Nevertheless, the proce- 
dure for doing so is a straightforward extension 
of work 
ton [1991 based on an analysis of (5). Space con- 

i 

ublished earlier by Berryman and Mil- 

straints o not permit further elaboration on this 
method here, but the full theory will be presented 
elsewhere. 
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